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Abstract
Warped product construction is an important method to produce a new metric
with a base manifold and a fibre. We construct compact base manifolds with
a positive scalar curvature which do not admit any non-trivial Einstein warped
product, and noncompact complete base manifolds which do not admit any
non-trivial Ricci-flat Einstein warped product.

PACS number: 02.40.Ma

1. Introduction

Warped product is an important method to produce a new metric with a base manifold and
a fibre. This method has been used for the construction of Einstein metrics on noncompact
complete manifolds and other important examples in relativity and differential geometry
[1, 3]. Construction of a non-trivial Einstein warped product on a compact manifold was
questioned by Besse [2, section 9.103], but no examples were found yet. Recently, Mustafa
proved that there exists a metric on every compact manifold N such that non-trivial Einstein
warped products, with base N, cannot be constructed [8]. There is a known obstruction to
the existence of a compact Einstein warped product. If a compact Einstein warped product
manifold has a non-positive scalar curvature, then the warped product should be trivial [6].
In this letter, we construct compact base manifolds with a positive scalar curvature which do
not admit any non-trivial Einstein warped product. For a noncompact complete Riemannian
manifolds, we prove that if a base manifold has at most quadratic volume growth and non-
positive total scalar curvature, then non-trivial Ricci-flat Einstein warped product cannot exist.
The Riemannian–Schwarzschild metric is a Ricci-flat Einstein warped product with the base
manifold (R2, g), where (R2, g) has a positive scalar curvature. Our result implies that the
sign of scalar curvature of a noncompact base manifold plays an important role in the Einstein
warped product.
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2. Warped products

Let N = (Nn, gN) and F = (F d, gF ) be two Riemannian manifolds and f be a positive
smooth function on N. We denote by π and σ the projections of N × F onto N and F,
respectively. The warped product M = N ×f F is the product manifold M = N × F

furnished with the metric g defined by g = π∗gN + f 2σ ∗gF , where * denotes the pull back.
N is called the base of M = N ×f F , and F the fibre, and the warped product is called trivial
if f is a constant function. We denote by RicN, RicF and Hf the lifts to M of the Ricci
curvatures of N and F, and the Hessian of f , respectively. Throughout this letter, we let dim
N � 2 and d = dim F � 2. The warped product (M, g) = N ×f F is Einstein with Ric = λg

if and only if (F, gF ) is Einstein, i.e., RicF = µgF for a constant µ and the followings hold
[9, p 211]:

λgN = RicN − d

f
Hf , (1)

λ = µ

f 2
− �f

f
− (d − 1)

∣∣∣∣∇f

f

∣∣∣∣
2

gN

, (2)

where �f = tr Hf .
First, we prove that there are infinitely many metrics on a base manifold N of dimension

m � 3 such that M = N ×f F cannot be a non-trivial Einstein warped product. This comes
from the resolution of the Yamabe problem on compact manifolds [10]:

Theorem 1 (Schoen). There exists a conformal metric g = eug for any given metric (N, g)

on a compact Riemannian manifold N of dimension m � 3 such that g has a constant scalar
curvature, where u is a smooth function on N.

Assume that scalar curvature SN of N is constant. By taking the trace of (1),

mλ = SN − d
�f

f
. (3)

Since f is positive, N is compact and there is no nonconstant super harmonic or subharmonic
function on a compact manifold, f must be a constant on N.

Theorem 2. For a given metric gN on N, there exists a conformal metric g = e2ug such that
there are no non-trivial Einstein warped products N ×f F with base (N, g).

A differential manifold of dimension m � 3 admits infinitely many different conformal
classes. Therefore, there are infinitely many metrics on a base manifold N of dimension m � 3
such that there are no non-trivial Einstein warped products N ×f F with base N.

Next we construct a manifold N with a positive scalar curvature such that there are no
non-trivial Einstein warped products (M, g) = N ×f F with base N. If a warped product
(M, g) = N ×f F is Einstein with Ric = λg with λ � 0, then the warped product should be
trivial [6]. Therefore we consider only when λ > 0.

Theorem 3. Let
(
Nr

1 , g1
)

and
(
Nm

2 , g2
)

be compact Riemannian manifolds with scalar
curvature S1 and S2, respectively. Assume that S1 is a positive constant and

(
Nm

2 , g2
)

has a non-positive total scalar curvature, i.e.,
∫
N2

S2 dVg2 � 0, with |S2| < S1. Consider
N = N1 × N2 with the product metric gN = g1 + g2 and positive scalar curvature SN . Then
there are no non-trivial Einstein warped products (M, g) = N ×f F with base (N, gN).
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Proof. Let f = f (x1, . . . , xr , xr+1, . . . , xr+m) be a positive smooth function on Nr
1 ×Nm

2 . By
taking the trace of (1) for i = 1 to i = r , and i = r + 1 to i = r + m, respectively, we have

rλ = S1 − d
�g1f

f
, (4)

mλ = S2 − d
�g2f

f
. (5)

Since S1 is constant �g1f should have a fixed sign in (4), which implies that f does not depend
on x1, . . . , xr . Integrating (5) on N2,∫

N2

S2 dVg2 =
∫

N2

mλ + d
�g2f

f
dVg2

=
∫

N2

mλ + d

∣∣∣∣∇f

f

∣∣∣∣
2

g2

dVg2 , (6)

which is not possible since λ > 0 and
∫
N2

Sm dVg2 � 0. We conclude that f is a constant
function. �

Theorem 4. Let
(
Nr

1 , g1
)

be a compact manifold of dimension r � 3 with constant
scalar curvature S1 and (Nk, gk) be two-dimensional compact Riemannian manifolds for
k = 2, . . . , m, and denoted by (N, gN) = (∏k=m

k=1 Nk,
∑m

k=1 gk

)
. If N ×f F is Einstein, then

the warped product should be trivial.

Proof. By taking the trace of (1) on N1, N2, . . . , Nm respectively,

rλ = S1 − d
�g1f

f
, (7)

2λ = Sk − d
�gk

f

f
for k = 2, · · · ,m. (8)

It is known that there is no non-trivial Einstein warped product over a compact two-dimensional
base manifold, which can be found in [2, section 9.119] and [5]. Therefore, there is no
nonconstant function on each Nk satisfying (8) and (2) for k = 2, . . . , m, which implies that
f is a function of N1 only. Since f satisfies (7) and S1 is a constant, f should be a constant
by the argument in the above of theorem 2. �

Next we construct a noncompact complete base manifold (N, gN) such that there is
no non-trivial Ricci-flat Einstein warped product M = N ×f F with base (N, gN). For
this, we introduce some notations. Let (N, gN) be a noncompact complete Riemannian
manifold. For � ⊂ N , we let |�| be the volume of � with respect to the metric gN

and B(R) ≡ {x ∈ N | dist(p, x) � R} for a fixed point p ∈ N . (N, gN) has at most
quadratic volume growth if there exists a constant c such that lim supR→∞

|B(R)|
R2 � c. For the

construction of (N, gN), we estimate the solutions of (3) using the methods developed in [7].

Theorem 5. Let (N, gN) be a noncompact complete Riemannian manifold with scalar
curvature SN . Assume that (N, gN) satisfies the following conditions:

(a) (N, gN) has at most quadratic volume growth,
(b) −∞ �

∫
N

SN dVgN
� 0 and

∫
N

S+
N dVgN

is finite, where S+
N(x) = max(0, SN(x)). Then

the followings hold:
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(c) If (N × F, gN + f 2gF ) is Ricci-flat Einstein, then f should be a constant.
(d) If there exists a point q in N such that SN(q) < 0, then (N × F, gN + f 2gF ) cannot be

Ricci-flat Einstein.

Proof. Choose a smooth function φ2 such that 0 � φ � 1 on N,φ = 1 on B(R), φ = 0
outside of B(2R) and |∇φ| � c/R, where c is a constant. From the above condition (b),
for any given small ε there exists a sufficiently large R0 such that

∫
N−B(R)

S+
N dVg � dε and∫

B(R)
SN dVg < dε for R � R0. This implies∫

B(2R)

SNφ2 dVgN
�

∫
B(R)

SN dVgN
+

∫
B(2R)−B(R)

S+
N dVgN

< 2dε. (9)

Multiplying φ2 on (3) with λ = 0,∫
N

φ2

∣∣∣∣∇f

f

∣∣∣∣
2

gN

− φ2

d
SN dVgN

=
∫

N

2φ∇φ · ∇f

f
dVgN

(10)

�
∫

N

1

2

∣∣∣∣∇f

f

∣∣∣∣
2

gN

+ 2|∇φ|2 dVgN
, (11)

where the Hölder inequality is used in (11). Therefore,∫
N

φ2

2

∣∣∣∣∇f

f

∣∣∣∣
2

gN

dVgN
�

∫
N

2|∇φ|2 +
φ2

d
SN dVgN

(12)

� 2c2

R2
|B(2R) − B(R)| + 2ε

� c′, (13)

where c′ is some positive constant and the quadratic volume growth condition is used in (13).

Therefore, the integral
∫
N

∣∣∣∇f

f

∣∣∣2

gN

dVgN
is uniformly bounded. From (10),

∫
N

φ2

2

∣∣∣∣∇f

f

∣∣∣∣
2

gN

dVgN
� 2c

R

∫
B(2R)−B(R)

∣∣∣∣∇f

f

∣∣∣∣
gN

dVgN
+

∫
N

φ2

d
SN dVgN

� 2c

(∫
B(2R)−B(R)

∣∣∣∣∇f

f

∣∣∣∣
2

gN

dVgN

)1/2 |B(2R) − B(R)|1/2

R
+ 2ε. (14)

By the condition (a) and
∫
N

∣∣∇f

f

∣∣2
gN

dVgN
< ∞,

∫
B(R)

∣∣∇f

f

∣∣2
gN

dVgN
goes to zero as R → ∞.

We conclude that f should be a constant. Furthermore, if there exists a point q ∈ N with
SN(q) < 0, then the constant f does not satisfy (3). �

Example. Let
(
Nm

1 , g1
)

be a compact manifold with a non-positive scalar curvature. Then
(N, gN) = (

Nm
1 × R2, g1 + δij

)
satisfies theorem 5 since it has a non-positive scalar curvature

and quadratic volume growth.

Remark. The Riemannian–Schwarzschild metric is a Ricci-flat Einstein metric
[2, section 9.118]. This metric is given by N ×f F , where N = R2 with the metric
gN = dt2 + 4f ′(t)2 dθ2, (F, gF ) = (S2, g0) with the standard metric g0 on S2, and f satisfies
(f ′(t))2 = 1−f −1(t). The base manifold (R2, gN) has positive scalar curvature S = 2f 3 > 0.
Theorem 5 implies that the sign of scalar curvature of a noncompact base manifold plays an
important role in the Einstein warped product construction.
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