Warped products and Einstein metrics

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 39 L329
(http://iopscience.iop.org/0305-4470/39/20/L06)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 03/06/2010 at 04:28

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Warped products and Einstein metrics

Seongtag Kim
Department of Mathematics Education, Inha University, Incheon 402-751, Korea
E-mail: stkim@inha.ac.kr

Received 23 February 2006
Published 3 May 2006
Online at stacks.iop.org/JPhysA/39/L329

Abstract

Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial Einstein warped product, and noncompact complete base manifolds which do not admit any non-trivial Ricci-flat Einstein warped product.

PACS number: 02.40.Ma

1. Introduction

Warped product is an important method to produce a new metric with a base manifold and a fibre. This method has been used for the construction of Einstein metrics on noncompact complete manifolds and other important examples in relativity and differential geometry $[1,3]$. Construction of a non-trivial Einstein warped product on a compact manifold was questioned by Besse [2, section 9.103], but no examples were found yet. Recently, Mustafa proved that there exists a metric on every compact manifold N such that non-trivial Einstein warped products, with base N, cannot be constructed [8]. There is a known obstruction to the existence of a compact Einstein warped product. If a compact Einstein warped product manifold has a non-positive scalar curvature, then the warped product should be trivial [6]. In this letter, we construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial Einstein warped product. For a noncompact complete Riemannian manifolds, we prove that if a base manifold has at most quadratic volume growth and nonpositive total scalar curvature, then non-trivial Ricci-flat Einstein warped product cannot exist. The Riemannian-Schwarzschild metric is a Ricci-flat Einstein warped product with the base manifold (R^{2}, g), where $\left(R^{2}, g\right)$ has a positive scalar curvature. Our result implies that the sign of scalar curvature of a noncompact base manifold plays an important role in the Einstein warped product.

2. Warped products

Let $N=\left(N^{n}, g_{N}\right)$ and $F=\left(F^{d}, g_{F}\right)$ be two Riemannian manifolds and f be a positive smooth function on N. We denote by π and σ the projections of $N \times F$ onto N and F, respectively. The warped product $M=N \times_{f} F$ is the product manifold $M=N \times F$ furnished with the metric g defined by $g=\pi^{*} g_{N}+f^{2} \sigma^{*} g_{F}$, where * denotes the pull back. N is called the base of $M=N \times{ }_{f} F$, and F the fibre, and the warped product is called trivial if f is a constant function. We denote by $\operatorname{Ric}^{N}, \operatorname{Ric}^{F}$ and H^{f} the lifts to M of the Ricci curvatures of N and F, and the Hessian of f, respectively. Throughout this letter, we let dim $N \geqslant 2$ and $d=\operatorname{dim} F \geqslant 2$. The warped product $(M, g)=N \times_{f} F$ is Einstein with Ric $=\lambda g$ if and only if $\left(F, g_{F}\right)$ is Einstein, i.e., $\operatorname{Ric}_{F}=\mu g_{F}$ for a constant μ and the followings hold [9, p 211]:

$$
\begin{align*}
& \lambda g_{N}=\operatorname{Ric}^{N}-\frac{d}{f} H^{f} \tag{1}\\
& \lambda=\frac{\mu}{f^{2}}-\frac{\Delta f}{f}-(d-1)\left|\frac{\nabla f}{f}\right|_{g_{N}}^{2} \tag{2}
\end{align*}
$$

where $\Delta f=\operatorname{tr} H^{f}$.
First, we prove that there are infinitely many metrics on a base manifold N of dimension $m \geqslant 3$ such that $M=N \times{ }_{f} F$ cannot be a non-trivial Einstein warped product. This comes from the resolution of the Yamabe problem on compact manifolds [10]:

Theorem 1 (Schoen). There exists a conformal metric $\bar{g}=e^{u} g$ for any given metric (N, g) on a compact Riemannian manifold N of dimension $m \geqslant 3$ such that \bar{g} has a constant scalar curvature, where u is a smooth function on N.

Assume that scalar curvature S_{N} of N is constant. By taking the trace of (1),

$$
\begin{equation*}
m \lambda=S_{N}-d \frac{\triangle f}{f} \tag{3}
\end{equation*}
$$

Since f is positive, N is compact and there is no nonconstant super harmonic or subharmonic function on a compact manifold, f must be a constant on N.

Theorem 2. For a given metric g_{N} on N, there exists a conformal metric $\bar{g}=\mathrm{e}^{2 u} g$ such that there are no non-trivial Einstein warped products $N \times{ }_{f} F$ with base (N, \bar{g}).

A differential manifold of dimension $m \geqslant 3$ admits infinitely many different conformal classes. Therefore, there are infinitely many metrics on a base manifold N of dimension $m \geqslant 3$ such that there are no non-trivial Einstein warped products $N \times{ }_{f} F$ with base N.

Next we construct a manifold N with a positive scalar curvature such that there are no non-trivial Einstein warped products $(M, g)=N \times_{f} F$ with base N. If a warped product $(M, g)=N \times_{f} F$ is Einstein with Ric $=\lambda g$ with $\lambda \leqslant 0$, then the warped product should be trivial [6]. Therefore we consider only when $\lambda>0$.

Theorem 3. Let $\left(N_{1}^{r}, g_{1}\right)$ and $\left(N_{2}^{m}, g_{2}\right)$ be compact Riemannian manifolds with scalar curvature S_{1} and S_{2}, respectively. Assume that S_{1} is a positive constant and $\left(N_{2}^{m}, g_{2}\right)$ has a non-positive total scalar curvature, i.e., $\int_{N_{2}} S_{2} \mathrm{~d} V_{g_{2}} \leqslant 0$, with $\left|S_{2}\right|<S_{1}$. Consider $N=N_{1} \times N_{2}$ with the product metric $g_{N}=g_{1}+g_{2}$ and positive scalar curvature S_{N}. Then there are no non-trivial Einstein warped products $(M, g)=N \times{ }_{f} F$ with base $\left(N, g_{N}\right)$.

Proof. Let $f=f\left(x_{1}, \ldots, x_{r}, x_{r+1}, \ldots, x_{r+m}\right)$ be a positive smooth function on $N_{1}^{r} \times N_{2}^{m}$. By taking the trace of (1) for $i=1$ to $i=r$, and $i=r+1$ to $i=r+m$, respectively, we have

$$
\begin{align*}
& r \lambda=S_{1}-d \frac{\Delta_{g_{1}} f}{f} \tag{4}\\
& m \lambda=S_{2}-d \frac{\Delta_{g_{2}} f}{f} \tag{5}
\end{align*}
$$

Since S_{1} is constant $\triangle_{g_{1}} f$ should have a fixed sign in (4), which implies that f does not depend on x_{1}, \ldots, x_{r}. Integrating (5) on N_{2},

$$
\begin{align*}
\int_{N_{2}} S_{2} \mathrm{~d} V_{g_{2}} & =\int_{N_{2}} m \lambda+d \frac{\triangle_{g_{2}} f}{f} \mathrm{~d} V_{g_{2}} \\
& =\int_{N_{2}} m \lambda+d\left|\frac{\nabla f}{f}\right|_{g_{2}}^{2} \mathrm{~d} V_{g_{2}} \tag{6}
\end{align*}
$$

which is not possible since $\lambda>0$ and $\int_{N_{2}} S_{m} \mathrm{~d} V_{g_{2}} \leqslant 0$. We conclude that f is a constant function.

Theorem 4. Let $\left(N_{1}^{r}, g_{1}\right)$ be a compact manifold of dimension $r \geqslant 3$ with constant scalar curvature S_{1} and $\left(N_{k}, g_{k}\right)$ be two-dimensional compact Riemannian manifolds for $k=2, \ldots, m$, and denoted by $\left(N, g_{N}\right)=\left(\prod_{k=1}^{k=m} N_{k}, \sum_{k=1}^{m} g_{k}\right)$. If $N \times_{f} F$ is Einstein, then the warped product should be trivial.

Proof. By taking the trace of (1) on $N_{1}, N_{2}, \ldots, N_{m}$ respectively,

$$
\begin{align*}
& r \lambda=S_{1}-d \frac{\Delta_{g_{1}} f}{f}, \tag{7}\\
& 2 \lambda=S_{k}-d \frac{\triangle_{g_{k}} f}{f} \quad \text { for } k=2, \cdots, m . \tag{8}
\end{align*}
$$

It is known that there is no non-trivial Einstein warped product over a compact two-dimensional base manifold, which can be found in [2, section 9.119] and [5]. Therefore, there is no nonconstant function on each N_{k} satisfying (8) and (2) for $k=2, \ldots, m$, which implies that f is a function of N_{1} only. Since f satisfies (7) and S_{1} is a constant, f should be a constant by the argument in the above of theorem 2.

Next we construct a noncompact complete base manifold (N, g_{N}) such that there is no non-trivial Ricci-flat Einstein warped product $M=N \times{ }_{f} F$ with base (N, g_{N}). For this, we introduce some notations. Let $\left(N, g_{N}\right)$ be a noncompact complete Riemannian manifold. For $\Omega \subset N$, we let $|\Omega|$ be the volume of Ω with respect to the metric g_{N} and $B(R) \equiv\{x \in N \mid \operatorname{dist}(p, x) \leqslant R\}$ for a fixed point $p \in N .\left(N, g_{N}\right)$ has at most quadratic volume growth if there exists a constant c such that $\lim \sup _{R \rightarrow \infty} \frac{|B(R)|}{R^{2}} \leqslant c$. For the construction of (N, g_{N}), we estimate the solutions of (3) using the methods developed in [7].

Theorem 5. Let $\left(N, g_{N}\right)$ be a noncompact complete Riemannian manifold with scalar curvature S_{N}. Assume that $\left(N, g_{N}\right)$ satisfies the following conditions:
(a) $\left(N, g_{N}\right)$ has at most quadratic volume growth,
(b) $-\infty \leqslant \int_{N} S_{N} \mathrm{~d} V_{g_{N}} \leqslant 0$ and $\int_{N} S_{N}^{+} \mathrm{d} V_{g_{N}}$ is finite, where $S_{N}^{+}(x)=\max \left(0, S_{N}(x)\right)$. Then the followings hold:
(c) If $\left(N \times F, g_{N}+f^{2} g_{F}\right)$ is Ricci-flat Einstein, then f should be a constant.
(d) If there exists a point q in N such that $S_{N}(q)<0$, then $\left(N \times F, g_{N}+f^{2} g_{F}\right)$ cannot be Ricci-flat Einstein.
Proof. Choose a smooth function ϕ^{2} such that $0 \leqslant \phi \leqslant 1$ on $N, \phi=1$ on $B(R), \phi=0$ outside of $B(2 R)$ and $|\nabla \phi| \leqslant c / R$, where c is a constant. From the above condition (b), for any given small ϵ there exists a sufficiently large R_{0} such that $\int_{N-B(R)} S_{N}^{+} \mathrm{d} V_{g} \leqslant d \epsilon$ and $\int_{B(R)} S_{N} \mathrm{~d} V_{g}<d \epsilon$ for $R \geqslant R_{0}$. This implies

$$
\begin{align*}
\int_{B(2 R)} S_{N} \phi^{2} \mathrm{~d} V_{g_{N}} & \leqslant \int_{B(R)} S_{N} \mathrm{~d} V_{g_{N}}+\int_{B(2 R)-B(R)} S_{N}^{+} \mathrm{d} V_{g_{N}} \\
& <2 d \epsilon \tag{9}
\end{align*}
$$

Multiplying ϕ^{2} on (3) with $\lambda=0$,

$$
\begin{align*}
& \int_{N} \phi^{2}\left|\frac{\nabla f}{f}\right|_{g_{N}}^{2}-\frac{\phi^{2}}{d} S_{N} \mathrm{~d} V_{g_{N}}=\int_{N} 2 \phi \nabla \phi \cdot \frac{\nabla f}{f} \mathrm{~d} V_{g_{N}} \tag{10}\\
& \leqslant \int_{N} \frac{1}{2}\left|\frac{\nabla f}{f}\right|_{g_{N}}^{2}+2|\nabla \phi|^{2} \mathrm{~d} V_{g_{N}} \tag{11}
\end{align*}
$$

where the Hölder inequality is used in (11). Therefore,

$$
\begin{align*}
\int_{N} \frac{\phi^{2}}{2}\left|\frac{\nabla f}{f}\right|_{g_{N}}^{2} \mathrm{~d} V_{g_{N}} & \leqslant \int_{N} 2|\nabla \phi|^{2}+\frac{\phi^{2}}{d} S_{N} \mathrm{~d} V_{g_{N}} \tag{12}\\
& \leqslant \frac{2 c^{2}}{R^{2}}|B(2 R)-B(R)|+2 \epsilon \\
& \leqslant c^{\prime} \tag{13}
\end{align*}
$$

where c^{\prime} is some positive constant and the quadratic volume growth condition is used in (13). Therefore, the integral $\int_{N}\left|\frac{\nabla f}{f}\right|_{g_{N}}^{2} \mathrm{~d} V_{g_{N}}$ is uniformly bounded. From (10),

$$
\begin{align*}
\int_{N} \frac{\phi^{2}}{2}\left|\frac{\nabla f}{f}\right|_{g_{N}}^{2} \mathrm{~d} V_{g_{N}} & \leqslant \frac{2 c}{R} \int_{B(2 R)-B(R)}\left|\frac{\nabla f}{f}\right|_{g_{N}} \mathrm{~d} V_{g_{N}}+\int_{N} \frac{\phi^{2}}{d} S_{N} \mathrm{~d} V_{g_{N}} \\
& \leqslant 2 c\left(\int_{B(2 R)-B(R)}\left|\frac{\nabla f}{f}\right|_{g_{N}}^{2} \mathrm{~d} V_{g_{N}}\right)^{1 / 2} \frac{|B(2 R)-B(R)|^{1 / 2}}{R}+2 \epsilon \tag{14}
\end{align*}
$$

By the condition (a) and $\int_{N}\left|\frac{\nabla f}{f}\right|_{g_{N}}^{2} \mathrm{~d} V_{g_{N}}<\infty, \int_{B(R)}\left|\frac{\nabla f}{f}\right|_{g_{N}}^{2} \mathrm{~d} V_{g_{N}}$ goes to zero as $R \rightarrow \infty$. We conclude that f should be a constant. Furthermore, if there exists a point $q \in N$ with $S_{N}(q)<0$, then the constant f does not satisfy (3).
Example. Let $\left(N_{1}^{m}, g_{1}\right)$ be a compact manifold with a non-positive scalar curvature. Then $\left(N, g_{N}\right)=\left(N_{1}^{m} \times R^{2}, g_{1}+\delta_{i j}\right)$ satisfies theorem 5 since it has a non-positive scalar curvature and quadratic volume growth.

Remark. The Riemannian-Schwarzschild metric is a Ricci-flat Einstein metric [2, section 9.118]. This metric is given by $N \times_{f} F$, where $N=R^{2}$ with the metric $g_{N}=\mathrm{d} t^{2}+4 f^{\prime}(t)^{2} \mathrm{~d} \theta^{2},\left(F, g_{F}\right)=\left(S^{2}, g_{0}\right)$ with the standard metric g_{0} on S^{2}, and f satisfies $\left(f^{\prime}(t)\right)^{2}=1-f^{-1}(t)$. The base manifold $\left(R^{2}, g_{N}\right)$ has positive scalar curvature $S=2 f^{3}>0$. Theorem 5 implies that the sign of scalar curvature of a noncompact base manifold plays an important role in the Einstein warped product construction.

Acknowledgment

This work was supported by the Korea Research Foundation Grant funded by the Korean government (MOEHRD) KRF-2005-202-C00036.

References

[1] Beem J, Ehrlich P and Easley K 1996 Global Lorentzian Geometry (New York: Dekker)
[2] Besse A L 1987 Einstein Manifolds (Berlin: Springer)
[3] Bishop R and O’Neill B 1969 Manifolds of negative curvature Trans. Am. Math. Soc. 145 1-49
[4] Dobarro F and Lami D 1987 Scalar curvature and warped products of Riemann manifolds Trans. Am. Math. Soc. 303 161-8
[5] Kim D 2000 Einstein warped product spaces Honam Math. J. 22 107-11
[6] Kim D and Kim Y 2003 Compact Einstein warped product spaces with nonpositive scalar curvature Proc. Am. Math. Soc. 131 2573-6
[7] Kim S 2005 Volume and projective equivalence between Riemannian manifolds Ann. Glob. Anal. Geom. 27 47-52
[8] Mustafa M 2005 A non-existence result for compact Einstein warped products J. Phys. A: Math. Gen. 38 L791-3
[9] O’Neill B 1983 Semi-Riemannian Geometry (New York: Academic)
[10] Schoen R 1984 Conformal deformation of a Riemannian metric to constant scalar curvature J. Differ. Geom. 20 479-95

